1 ELECTRICAL CONDUCTIVITY OF Cd CYLINDERS

The plot clearly indicates no evidence for the presence
of harmonics of the lens oscillations or for the presence
of the short-period Grenier oscillations.

It has been demonstrated that submillimeter diam-
eter cylinders may be prepared by spark-trepanning
without significant reduction in the bulk mean free
path. This is evidenced by the fact that the observed
oscillations are of approximately the same amplitude
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as those observed in Sondheimer samples of equivalent
thickness. The use of cylindrical samples in conjunction
with field-modulation detection of the oscillations will
allow probing of the curvature of Fermi surfaces by
rotation of the magnetic field without the complication
of loss of sample symmetry. Further, the order of
magnitude increase in practical current density results
in an equivalent increase in signal.
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The magnetoresistance of many polycrystalline samples of nickel alloyed with small concentrations of
iron, cobalt, manganese, chromium, and carbon has been measured. An analysis of the data gave the result
that all those specimens in which the conduction-electron scattering was dominated by one particular
scattering center were found to obey Kohler’s rule. However, the details of the magnetoresistance were
different in each case, with the exception of the iron, cobalt, and manganese impurities, which formed one
group. In addition, the thermal-scattering magnetoresistance and that due to deformation were different
again. These observations confirm previous conclusions concerning the validity of Kohler’s rule. Extremely
large magnetoresistance was found for the iron, cobalt, and manganese group of impurities as scattering
centers, which apparently is much larger than observed in any other system. This can be correlated with
other electronic properties of the impurities, such as the resistivity and magnetic moment per unit con-
centration. In particular, the high magnetoresistance appears associated with the presence of large local
moments. The zero-field anisotropy in the resistance is also correlated with these same properties. In spite
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of this correlation, we have no clear interpretation of the extreme magnetoresistance.

I. INTRODUCTION

NOW that properties of the Fermi surface have
become relatively well understood, the role of
electron scattering processes has become of importance
in understanding some of the electronic transport prop-
erties of metals. We note recent work by Dugdale
and Basinski' relating breakdowns in Matthiessen’s
rule in noble metals to anisotropies in the relaxation
times and work by Bailyn and Dugdale? on effects in
the electronic contribution to the thermoelectric power,
again in the noble-metal alloys. Attention to this aspect
of transport properties was first drawn by Coles? in
connection with Hall effect studies. Since then, further
work has been contributed by Cooper and Raimes,*
Ziman,’ Hurd,® and Heine.” In particular, Ziman has
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given a discussion of transport properties in noble-metal
alloy systems based on well-known Fermi-surface
properties and shown that in some cases considerable
anisotropy in the relaxation times could be concluded
from the experimental results. Deaton and Gavenda®
have made direct measurements of these anisotropies in
copper. Most of the work to data has been carried out on
noble-metal alloys. In this paper, we are concerned with
magnetoresistance measurements on very dilute alloys
of nickel in which[effects thought to be due to electron
scattering effects are identified. Rather large break-
downs in Matthiessen’s rule in more concentrated alloys
of the same type have recently been identified by Fert
and Campbell® and by Farrell and Greig!® and identified
by them as due to spin mixing (see Campbell, Fert and
Pomeroy, and Bourquard, Daniel and Fert!2).

8 B. C. Deaton and J. D. Gavenda, Phys. Rev. 129, 1990 (1963).
9 A. Fert and I. A. Campbell, Phys. Rev. Letters 21, 1190 (1968).
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977 (1967).
( 12 A, Bourquard, E. Daniel, and A. Fert, Phys. Letters 264, 260
1968).
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The intimate connection between the electron
scattering process and the magnetoresistive behavior
of a metal has recently been emphasized by Pippard.’3:14
Thus, if the scattering contains a significant amount of
small-angle scattering, a diffusion model for motion of
electrons over the Fermi surface becomes appropriate
and this may have marked effects on the magnetoresis-
tance® (see also Klemens and Jackson's). This con-
clusion was illustrated by calculations on copper and
there is evidence that one section of the Fermi surface of
nickel has a similar topology to that of copper.!®
Alternatively, it may be appropriate to make the
relaxation time approximation and assume that the
relaxation time is anisotropic, i.e., a function of the
electron wave vector k. In that case, the coefficient of
B? in the low-field expansion for the resistivity p(B) is
related to averages of the relaxation time over the Fermi
surface!” and the saturation value of the longitudinal
magnetoresistance (current parallel to B) depends on
anisotropy in the mean free path® [[=r(k)|V|]®
where 7(k) is the anisotropic relaxation time and V is
the Fermi velocity.

A first step in the analysis of magnetoresistive be-
havior is often to see if the data are governed by Kohler’s
rule?® Ap/po=F(B/po), i.e., the fractional increase in
resistance Ap/po in a magnetic induction B of a specimen
of resistivity po at zero induction is a function only of
the parameter B/po. A discussion of Kohler’s rule has
been given by Chambers* who suggests that the rule is
valid provided that a relaxation time approximation
can indeed be made, that changes in po for a given set of
samples give rise to negligibly small changes in electron
band-structure details and, finally, that changes in p,
result only in changes in the magnitude of the relaxation
time 7(%) and not in the form of the dependence on £.
We, therefore, expect that the 7(k) corresponding to
two differing scattering centers may give rise to two
different forms of the function F in Kohler’s rule. Thus,
an exploration of the validity of Kohler’s rule may
identify for us similarities and dissimilarities in the 7 (%),
provided, of course, that Chambers’s other two criteria
are satisfied. It is not entirely clear what the status of
Kohler’s rule is in situations for which the relaxation
time approximation is not valid, such as the small-angle

13 A. B. Pippard, Proc. Roy. Soc. (London) A282, 464 (1964).

4 A. B. Pippard, Proc. Roy. Soc. (London) A305, 991 (1968).
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(1967).
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scattering situation discussed by Pippard.’34 We shall
later outline arguments why it still may be valid under
appropriate conditions and we suspect that under these
conditions the rule may be relatively general. Experi-
mental breakdowns of Kohler’s rule in copper have been
reported by de Launay, Dolecek, and Webber?? and by
Jongenburger?® in circumstances for which it is plausible
that changes of anisotropy are occurring, and Tsui and
Stark® attribute similar breakdowns in this rule in
cadmium to anisotropies in the scattering probabilities.

In the following sections, we will describe data for
nickel doped with varying amounts of Fe, Co, Mn, Cr,
and C which we relate to differing anisotropies of the
relaxation time associated with each impurity. The
concentrations in each case are small enough that we
believe the band structure to be essentially unaffected.
One difficulty associated with ferromagnetic metals is
the occurrence of the magnetic induction B and not the
applied field H in Kohler’s rule. For nickel, the difference
4rM, is 6.4 kG and changes the value of p, considerably
for a pure sample. We have discussed this problem
elsewhere in connection with the determination of the
temperature dependence of the ‘“ideal” resistivity?s
and also in connection with the problem of determining
the residual resistivity of nickel specimens and the
question of the validity of Kohler’s rule.?¢ In this paper,
we lay more emphasis on the magnetoresistance corre-
sponding to well-characterized systems so that com-
parisons between the Kohler’s function F relating to
different scattering centers can be made. We also com-
pare the data with that representing ideal resistivity
and with that from dislocation-dominated samples. The
observations reinforce the conclusions of our earlier
work? concerning the conditions of wvalidity of
Kohler’s rule and suggest that breakdowns in Kohler’s
rule may well yield useful information in studies of the
role of the electron scattering process in transport
properties.

A final note should be made about the choice of some
of the systems for these experiments, i.e., as given above,
alloys of Ni with Fe, Co, Mn, and Cr. Experimentally,
a distinction can be drawn between Fe, Co, and Mn, on
one hand, and Cr on the other, since, according to
neutron diffraction, Fe, Co, and Mn are characterized
by a local moment which is different from that of the
nickel matrix, whereas Cr is not.?” Corresponding dif-
ferences are also noted in the changes in magnetic
moment/unit concentration (ViCr alloys deviate from
the Slater-Pauling curve),?” and in the resistivity/unit
concentration (Cr impurities give a much larger re-

2 ]. de Launay, F. L. Dolecek, and R. J. Webber, J. Phys.
Chem. Solids 11, 37 (1959).

% P. Jongenburger, Acta Met. 9, 985 (1961).

#D. C. Tsui and R. W. Stark, Phys. Rev. Letters 19, 1317
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% F. C. Schwerer and J. Silcox, Phys. Rev. Letters 20, 101
(1968).

26 F. C. Schwerer and J. Silcox, J. Appl. Phys. 39, 2047 (1968).

%" G. G. E. Low and M. F. Collins, J. Appl. Phys, 34, 1195 (1963).
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sistivity increment).28 The first theoretical discussion of
these differences was given by Friedel?® in terms of the
relationship of the impurity d level to the Fermilevel. A
more recent discussion has been given by Campbell and
Gomes.®® Thus, there are good reasons for expecting
qualitatively different impurity electronic structures in
the two cases leading to differences in the anisotropy of
the electron scattering.

II. EXPERIMENTAL PROCEDURE

Specimens were cut 5.5 cm long and 3 mm wide from
Johnson Matthey and Co. nickel foil (0.003 in, nominal
purity 99.9979,). For potential probes, nickel wires
(0.04 mm diam.) were spot welded along the long axis of
the sample at a gauge length of 3.0 cm. With suitable
annealing treatments,? these foils were found to have
resistivity ratios Re7s/Ra.2 in excess of 2500. The solute
material (Cr, Mn, Fe, Co, or C) was evaporated onto
both large surfaces of the sample either in an electron-
beam evaporator or from hot tungsten filaments.
Specimens prepared in each way gave identical results.
Alloying was accomplished by letting the solute diffuse
into the foil to a uniform concentration. For this, the
sample was placed in a vacuum chamber which was
evacuated to 1077 Torr. The sample was surrounded
with a liquid-nitrogen trap and a high-purity atmo-
sphere was flushed continually through the chamber
while the sample was heated by passing a dc current
through the foil. Annealing conditions were chosen to
minimize the diffusion time %, reevaporation of the
solute, and reactions with the atmosphere. The samples
were annealed for periods in excess of {9=¢§2/4D, where
8 is the half-thickness of the foil and D is the diffusion
coefficient for the solute in nickel at the annealing
temperature. For iron, cobalt, and chromium solutes,
the samples were annealed for 5 h at 1250°C in a
nitrogen atmosphere at 10=° Torr. For manganese
solute, the samples were annealed for 1.5 h at 1200°C
in a nitrogen atmosphere at 0.05 Torr. For carbon
solute, anneals were 10 min at 1050°C in a carbon
dioxide atmosphere. After annealing, the grain size
was typically of order 10 um. In this manner, alloys of
nickel with iron (10-10 000 ppm), cobalt (20-1210 ppm),
manganese (12-60 ppm), chromium (5-1700 ppm),*
and carbon® (10-4400 ppm) were prepared. The
homogeneity of the alloys was checked by reannealing
a few samples from each series for another full period °.
The magnetoresistivity of these double annealed samples
was entirely compatible with that of the singly annealed
samples, a test, which the results presented below will
suggest, is quite sensitive.

28 Estimated from the residual resistivity and the data of C. W.
Chen, Phys. Letters 7, 16 (1963).

2 J. Friedel, Nuovo Cimento 7, Suppl. 2, 287 (1958).

® 1. A. Campbella nd A. A. Gomes, Proc. Phys. Soc. (London)
91, 319 (1967).

31 Estimated from the residual resistivity and the data of F. C.
Schwerer, J. Appl. Phys. 40, 2705 (1969).
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Some samples prepared in this fashion, particularly
those for the highly magnetoresistive series, initially
showed large deviations from the appropriate Kohler
plot. These “bad” samples could not be related to the
evaporation procedure, annealing time, or solute
concentration, but rather were ascribed to contamina-
tion during the anneals. The remarkable feature, how-
ever, is that by annealing these samples in either an
argon-oxygen or nitrogen atmosphere (see Schwerer
and Silcox?® for details), the samples could be cleaned up
and then fitted the appropriate Kohler plot. This
contamination accounted for only a fraction (generally
less than one-half) of the total resistivity. Consequently,
Kohler’s rule provides a sensitive test for adventitious
effects of this sort.

At the time the experiments were done, the geo-
metrical factor (gauge length/cross-section area) for
each sample was deduced from Matthiessen’s rule and
the measured resistances at 0°C and 4.2°K; White
and Woods® value of 6.2 uQcm was used as the ideal
resistivity. The work by Farrell and Greig'® and Fert
and Campbell® on comparable alloys has identified
breakdowns in Matthiessen’s rule, and it has proved
necessary to reevaluate this procedure. For dilute alloys
of the type discussed here, the correction due to
Matthiessen’s-rule breakdown has proved relatively
small and has not changed the Kohler plots significantly.
The main effect has been to change our estimates of the
impurity concentration present, since these were
determined from the residual resistivity. All estimates of
impurity concentration have been corrected for this
effect.

Magnetoresistance measurements were made at 4.2°K
in applied fields up to 18 kQe. The resistance at zero
applied field was measured to ==0.02 u by a four-probe
technique using a Minneapolis-Honeywell six-dial
potentiometer. The difference of the voltage across the
specimen from the zero-field setting of the potentiometer
was amplified and plotted on an X-V recorder as a
function of applied magnetic field for fields parallel and
perpendicular to the current. Changes in resistance were
measured with a relative accuracy of better than 19,
and nonlinearities due to the measuring circuit were
less than 0.5%,.

In addition to facilitating the dilute alloying, the
sample shape minimized demagnetizing fields for the
relevant orientations. Demagnetizing fields in the plane
of the foil, due to the saturation moment, were estimated
using Osborn’s® expression for the general ellipsoid
as Hi?=1.7 Oe for the field parallel to the long axis
of the sample and current (longitudinal orientation)
and as H,2=150 Oe for the field perpendicular to the
long axis (transverse orientation). Where necessary, all
data has been corrected for this effect.

2 G. K. White and S. B. Woods, Phil. Trans. Roy. Soc. London
A251, 273 (1959).
3 J, A. Osborn, Phys. Rev. 67, 351 (1945).
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The low-field portion of the transverse resistivity
curves (that portion showing effects associated primarily
with technical magnetization) was sensitive to a
misalignment of 0.5°, whereas a misalignment of 5.0°
did not produce a detectable change in the high-field
transverse magnetoresistivity data. The longitudinal
resistivity was much less sensitive to a misalignment of
the sample. All specimens were aligned to within 0.5° of
the desired orientation.

III. ANALYSIS OF DATA
A. Background

The change in resistivity Ap(B) of a metal in a mag-
netic field B due to Lorentz forces on the conduction
electrons depends in a complex fashion upon the
electronic character of the material and upon the
orientation of the field and the current. The magnetore-
sistivity Ap(B)/po always saturates for fields applied
parallel to the current p;;(B) (longitudinal magnetore-
sistivity) and, depending on the topology of the Fermi
surface, either saturates or continues to increase for
field applied perpendicular to the current p,(B) (trans-
verse magnetoresistivity).** In general, longitudinal
magnetoresistivity is the weaker effect. Kohler’s rule,
used to describe this behavior, can be deduced from the
solution of the relevant Boltzmann equation in a relaxa-
tion time approximation. The tube integral expression
for the magnetoresistive behavior F (involving electron
velocities and scattering processes over the Fermi
surface) contains the magnetic field only in the combina-
tion Br(k) where 7(k) is the relaxation time as a
function of electronic wave vector. If changes in the
resistivity po; result solely from changes in magnitude
but not in the functional form of the scattering process
[e.g., 7(K)—(1/¢)7(k)], then F is a function of Br(k)/c,
i.e., a function of B/c. Since po; is a measure of the
strength of the scattering processes ¢, this implies that
F is a function only of B/pe;. Such considerations led
Chambers? to the criteria mentioned in the Introduc-
tion for the wvalidity of Kohler’s rule, namely, (i)
collisions can be described in terms of a relaxation time,
(ii) the filled region in k space does not change appreci-
ably in size over the range of temperature or purity
considered, and (iii) changes in temperature or purity
simply alter all 7(k) by the same factor. Appropriate
modifications of these arguments are discussed in Sec. V.

B. Method of Analysis

Because B is the relevant field, a problem arises
which is illustrated by Fig. 1. The measurements give
Ap/po; over a window only in the argument 92G/po;
< B/p0i<24kG/poi, where the lower limit is given by
the value of the induction corresponding to the field
needed to remove the ferromagnetic domain structure

3¢ A. B. Pippard, The Dynamics of Conduction Electrons (Gordon
and Breach, Science Publishers, Inc., New York, 1965), p. 98.
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Fi1c. 1. Schematic representation of the longitudinal p;; and
transverse pj magnetoresistance of a ferromagnetic metal. The
solid curves represent the experimentally measurable portions and
the arrows indicate the result of reducing the data over the range
W under Kohler’s rule.

and the upper limit is instrumental. The procedure
which we have followed previously?®-?® and review here
is essentially to vary pe; in a controlled fashion, taking
care to alter only the number of scattering centers
while keeping the type of scattering center the same.
It is, thus, possible to map out the function F over a
wide range of the argument. We note that pe;, being the
resistivity at zero induction, is experimentally unobtain-
able and that, accordingly, Kohler’s rule has to be
approached in an oblique fashion. We write it in the
form

ki(c)pi(B)=p*{1+FLxi(c) B/p* ]}, 1)

where «;(c)=p*/po; is the ratio of a standard resistivity
o* to po;.. Analysis of the data in this form involves
plotting [p(B), B] for a low-concentration sample. A
value of k(c) is then chosen for a sample with a slightly
larger solute concentration (¢) such that a data point
reduced as [«(c)p(B), x(c)B] falls on the curve for the
original sample. If Kohler’s rule is obeyed, then not only
do the values of the magnetoresistivity match at this
point but so will the slopes of the curves and the two
sets of data become continuous. It was observed that
the data from samples with the same solute did, indeed,
reduce in this fashion to a unique curve; however, each
solute series described a distinct curve and, naturally,
the longitudinal and transverse data reduced to different
curves. By a judicious choice of solute concentrations,
the data from different samples will overlap sufficiently
to ensure that the curve will be smoothly continued and
that the total curve will span a large enough range of xB
to facilitate extrapolation to zero induction. The
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extrapolated value of the resistivity p* represents the
scattering process resistivity at zero induction for the
sample with «(c)= 1. Indeed, the plot represents the full
magnetoresistive curve of this x(c)=1 sample including
values of B which are experimentally inaccessible. From
p* and the «(c) values, the scattering process resistivity
may be inferred for each sample in the series and mean-
ingful Kohler plots can be made.

We note that it is not necessary that the transverse
and longitudinal Kohler plots reduce to the same value
of zero-induction resistivity.*® Indeed, experimentally,
in many cases, they do not. We denote such anisotropy
with the notation A;;=pi—ps, and data on values of
A,q will also be given in this paper.

These features are illustrated in Fig. 1, in which
schematic [p(B), B] plots have been made for the
longitudinal (p;;) and transverse (o) magnetoresistivity.
The solid portion of the curves is that which is experi-
mentally measurable. A small region associated with
magnetic domain effects (technical magnetization) has
been included. The curves illustrate the uncertainty in
extrapolating the data of a low-resistivity sample from
the saturated region to B=0. The anisotropy in the
scattering process resistivity A,q is shown with the
normally observed sign (pgii>po1). To illustrate the
mapping obtained by reducing data from other samples
as (kp, kB), a “measurable” transverse resistivity curve
for a sample with a larger scattering process resistivity
is plotted and arrows indicate the result of reducing the
data.

That this procedure is necessary is shown by plots of
the same data using the applied field H, instead of
B(=H,+4rM,) [see Fig. 2 in comparison with Fig.
4(a)]. In these cases, data from samples in a given series
which reduced appropriately for B do not reduce to a
single plot either as (xp, kH) or as (Ap/po, Ha/po).2® The
requirement that the data reduce under Kohler’s rule
and the experimental conditions of this study deter-
mined the field additional to the applied field to be
4rM,=6.4 kG to within 109,. From the saturating
form of the magnetoresistivity and the large value of
4w M, relative to the applied fields, it is apparent that an
accurate graphical extrapolation of the data to B=0 for
a single sample would be very difficult.

C. Discussion of Errors

The results presented in this paper as well as those of
our previous communications on this subject depend
critically on the data being described by Kohler’s rule.
It is difficult to present the agreement with this rule
convincingly as a Kohler plot since Ap/po and B/po each
vary over three or four orders of magnitude for a given
series. In turn, each series is composed of typically
15-25 samples with 15 reduced data points per sample.
To enhance the credibility of these plots, we will discuss
in some detail the limits on the reduction of our data

3 H. C. Van Elst, Physica 25, 708 (1959).
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Fi16. 2. Magnetoresistance of N¢Fe reduced as kp, «H , for samples
(1) 10-ppm Fe; (2) 20-ppm Fe; (3) 60-ppm Fe; (4) 275-ppm Fe.

under Kohler’s rule. This discussion will be in the
context of the graphical analysis technique described
above; more sophisticated discussions would be appro-
priate to analytical, computer-assisted analyses. This
discussion will relate to the reduction of the data as
(Ap/po, B/po) rather than as (kp, kB). Although these are
physically identical, the former is a more sensitive test,
Ap/po being a difference of two similar quantities.

Four considerations are relevant to a discussion of the
degree to which Kohler’s rule describes the data from
several samples.

1. Experimental errors. Such errors always tend to
obscure agreement with theoretical descriptions. With
the methods described above, the change in resistivity
was measured with uncertainties of the order of 19, of
the total change, i.e., 6(Ap;)~0.01poF. At very low
values of F, the measuring system imposed a limit on
the resolution of (Ap/po) of order 2)X10~% However,
over most of the range the resolution was dominated by
errors inherent in the graphical techniques of order
8(Ap/po)~0.02F. Experimental errors in the determina-
tion of B were negligible and errors in B/po; arose
principally during the assignment of values to po;. It is
to be noted that the geometrical factor for each sample
only enters in the variable B/po;, not in the more
sensitive (Ap/po;). Thus, 0.02F (or 2XX107%) essentially
defines the uncertainty in the placement of data on a
Kohler plot.

The first question concerns the extent to which
experimental errors obscure true deviations from
Kohler’s rule. That is, data from sample 1 with Kohler
function F; is compared with either a known Kohler
plot Fs or with data from a sample 2 described by Fo.
If po1 and poe are chosen such that the two Kohler plots
coincide at 4, and if the range of overlap of the two sets
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of data is Ab, then the deviation of the two curves at
b+ Ab will be

AF~ (Fll—le)Abﬁ (nl—nz)FAb/b,

where the second approximation comes from using
F=A4b" (a most useful description for log-log Kohler
plots). To be detectable, this deviation must be greater
than 8(Ap/po)~0.02 F. In our experiment 4>Ab/b>1
and # ranges from 2 to 0.5. We, therefore, find a limit
of resolution for #;—#, of several percent.

A similar argument can be used to determine the
usefulness of Kohler’s rule in determining the field B
governing the magnetoresistive behavior. In particular,
we consider B= B-+AB where AB is the deviation from
the true value of the induction. The data from two
samples described by the same Kohler function F(B/po)
are assumed to be fitted at the high limit of B with
appropriate values for po; and pos. Equating the devia-
tion at the other limit of their range of overlap to the
experimental limit of detection (0.02F), we find a limit
of resolution given by (AB/B)=(AF/F)/n(Ap/p),
where Ap=po1—pos. Inserting values of n=1, Ap/p=0.5
and AF/F~0.02, values met in the course of our work,
we find that AB~0.1 (4wM,), i.e., B has tobe H+4nwM,
to within 109, of 4w M ,.

If the po; are determined for a series by fitting p;(B) to
a curve of the form po[ 14 F(B/po:)], then the errors in
po; will be of order

(8p0i/poi) = [8ps(B) /p:(B) ]+ (8F /1+F).

The first term 8p;(B)/p:(B) is generally negligible and,
as discussed above, we may put §F=0.02F. Hence, for
common situations with F less than unity, we should
expect errors in the relative values of po; of less than 197,.
However, in dilute highly magnetoresistive alloys, F
can be as high as 10 and the limiting accuracy of 29,
applied in these cases.

Note that, in order to minimize errors, measurements
should be taken over as wide a range in H as possible.

2. Systematic errors. Certain systematic errors in
analysis of the data are compatible with Kohler’s rule.
For example, if po;= po;t(14-6) is used to reduce the data
where po is the “true’ zero-induction resistivity, then

Kohler’s rule gives
P (B) —pPo: - 5, 1 B

= + F <_ (1+3:) ) .
L0:

ps (148)  (1+45)

Consequently, if §; is constant for the series,
[o(B)—poil/po: remains a function only of B/po; and a
Kohler-like plot will be obtained. If the resistivities po;
are deduced from an erroneous extrapolated value p* of
the (k:p, x:B) plot as po;=p*/k(c), then exactly this type
of error (§; constant) will result. However, the resultant
Kohler-like plot will not extrapolate to zero as B/p;—0,
may become negative, and will not approach a quadratic
Jow-field dependence. Such criteria were used to reduce
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these systematic errors such that the absolute accuracy
of po; (and the placement of the Kohler plot) was limited
by the random relative errors described above.

This type of systematic error gives a measured
anisotropy in the scattering process resistivity
(Asa=pon—poy) proportional to pg; with a propor-
tionality constant equal to the difference between 6.
and 0y, the fractional errors for the transverse and
longitudinal resistivities. Since we wish to analyze Ay
for a linear dependence on concentration (po?), these
errors could be particularly troublesome. From the
above consideration, we expect these systematic errors
to limit our resolution of the coefficient (Asa/pot) to
~=40.01.

A similar troublesome systematic error is the one
involved by assuming the validity of Matthiessen’s rule
and deriving the geometrical factor (Sec. IT) in pref-
erence to direct measurement.

3. Field dependences of the resistivity. There exist other
field dependences of the resistivity which are not due to
Lorentz forces and are not described by Kohler’s rule.
These dependences may be of sufficient magnitude to
give apparent deviations from a Kohler description of
the resistivity. In this study, the fields used (the values
of B/py) were not large enough to necessitate considera-
tions of magnetic breakdown and the field dependence
of the spontaneous magnetization M, (once the sample
is technically saturated) is expected to be well below our
limit of resolution. However, there remain scattering
process resistivities which are field dependent, such
as those associated with spin-disorder scattering or
localized magnetic moments. If the scattering process
resistivity is described by po(H)=po[147(H)] and the
Kohler description is

[o(B)—po(H)]/po(H)=F(B/po(H)),

then data reduced with a fixed value p, will deviate from
the Kohler plot by 7(H)[1+ (1—#»)F], where again we
have used F=A4 (B/po)™ At low fields (#>1), F is small
and the deviations are of order 7(H). These deviations
should be detectable only if the total change J* 7 (H) dH
is larger than 0.02F. At high fields #» — 0, F may be as
large as 10 or 20 and a total change greater than ~0.02
should be detectable.

4. Chamber’s criteria. Finally, there are deviations
from Kohler’s rule due to violations of one or more of
Chambers’s criteria. Having eliminated or put bounds
on other sources of deviations and apparent agreements,
we are now prepared to discuss observed deviations in
terms of violations of these criteria.

IV. OBSERVATIONS
A. Magnetoresistivity

Magnetoresistivity data obtained with the carbon-,
chromium-, and iron-doped samples in the transverse
orientation are shown in the reduced form «p, B in Fig.
3, together with data for a temperature dependent



1 SCATTERING-CENTER EFFECTS IN MAGNETORESISTANCE OF Ni

T T T 19

Transverse Magnetoresistance /
Sr Nickel /q

Kp(B) nQ cm

Ll
10 102 103 104 105
xB kilogauss

F16. 3. Transverse magnetoresistance of nickel reduced as
(kp, «B) for several scattering centers. The bar represents the
range of B for a single sample. The scale for the dashed curve is to
the right.

series.?® Measurements were made at 14 field values
between 2.4 and 18 kOe on 29 iron-doped samples, 15
chromium-doped samples, and 13 carbon-doped samples.
The wide ranges of xp and «B covered and the high
accuracy and large number of points involved preclude a
meaningful reproduction of the actual data points.
Rather, the data is presented as smooth curves where
the width of the curve approximates the errors involved.
A representative region of the iron-doped specimen
data is shown expanded in Fig. 4(a) to indicate the
excellent reduction of the data under Kohler’s rule. A
comparable region for chromium-doped data is shown in
Fig. 4(b). This data has been normalized to a value
p*=1nQcm for all series. This same data failed to reduce
appropriately when the applied field H, was used, as
shown in Fig. 2 (see Fig. 4, Schwerer and Silcox,2 for
plots of xp, and xH, for the chromium-doped series).
The data from each series was distinctive in the sense
that it did not reduce compatibly with the data from
any other series. In addition, series prepared by re-
covering cold-worked material® and by varying the
temperature of a high-purity sample? also gave distinc-
tive plots. However, data from the cobalt-doped series
was indistinguishable from the iron-doped series and the
manganese-doped series very closely approximated it.
Over the concentrations studied, the cobalt and man-
ganese solutes behaved similarly to the iron solutes,
but doping was not achieved over as wide a range in
these samples. Kohler plots for the iron-doped series
are shown in Fig. 5 and the carbon-doped series in Fig. 6.
A comparison of Kohler plots for all the scattering
centers so far studied is given in Fig. 7 and illustrates
the dramatic difference between the iron-, cobalt-, and
manganese-doped series and the others. We emphasize
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again that each Kohler plot apart from the iron, cobalt,
and manganese series seems to be distinctive.

One feature of the data deserves comment. In terms
of concentration dependence, the extensive iron-doped
series divided into three regions. In the middle region of
intermediate concentrations, estimated to be 600-2400
ppm, the data reduced to the Kohler plot only for fields
greater than 10 kOe. For samples in the other two
concentration regions, the data reduced to the Kohler
plot for fields greater than 2.5 kOe (the field needed to
remove the magnetic domain structure). Within experi-
mental error, the same Kohler plot applied in all three
ranges. The behavior in the intermediate range samples
is suggestive of an impurity spin-ordering process. We
return to this point later.

B. Form of Longitudinal Magnetoresistance

The differences in the magnetoresistive behavior
could be described quantitatively when it was observed
that the longitudinal Kohler plots [[InAp(B)/po,
In B/po] had identical shapes for all the series [i.e., iron,
manganese, cobalt, and chromium doped, temperature-
dependent,? recovery (i.e., dislocation scattering?®), and
some specimens doped by gas chemistry?®] with the
exception of the carbon-doped series. The common
shapes implied that two parameters (¢, 87) could be
found for each series such that the longitudinal data
from all the series fell on a unique curve for the variables
[a2(Ap(B)/po); B71(B/po)]. Values for a,8 for each
series were taken as those values which adjust the data
to a master curve of the same shape which approaches a
saturation value of Ap/pp=1.0 and which reaches half-
saturation Ap/po=1% at B/po= 103 kG/uQ cm. Discussion
of the physical significance of a, 8 will be given later. At
this point, we note that a becomes the saturation value
of the longitudinal magnetoresistance for each series
which, in the normal nearly free-electron picture, has
been shown by Pippard* to be related to the anisotropy
of the electron velocity and relaxation time over the
Fermi surface. We relate 8 in some sense to the Hall
constant Ay by remarking that in the tube integral
formula for o;;, the appropriate argument for F is w.'7,
i.e., Ag’'B/p’, where the prime denotes values for a
specific orbit in % space. Since 8 comes into the argument
as B71B/po, we may expect 8 to be some measure of
the Hall constant. The relevant data are given in Table
I for the series discussed in this paper and by Schwerer
and Silcox.?5:?6 Similar parameters for the carbon-doped
series which did not reduce to this common curve were
found from the criteria that « is the saturation value of
Ap/po and that Ap/pp=3%a at w,r=1. For comparison,
the master curve and the carbon-doped series reduced
by these parameters are shown in Fig. 8.

C. Residual Resistivity Anisotropy

The anisotropy in the scattering process resistivity
Asa=pon—pos (see Fig. 1) was calculated from the
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Fi16. 4. (a) Longitudinal magnetoresistance of several samples from the N:iFe series reduced as [p(B) —po]/po; B/po. The bar represents
the range of B/p, for a single sample. Compare this plot with the same data given in Fig. 2. (b) A comparable plot for a chromium-doped
sample. Compare with Fig. 4 of Schwerer and Silcox (Ref. 26).

scattering process resistivities p used to form the Kohler values about the mean. The anisotropy at zero applied
plots. For the chromium-doped series Ayu/po. field A(H,=0) includes an additional anisotropy Amwr
=+ (0.940.8)9%, with no systematic deviations of the from the magnetoresistance which also may be calcu-
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F1c. 5. Kohler plots of the transverse and longitudinal mag-
netoresistance of NiFe. The bar represents the range of B/p for a
single sample. The numbered points were measured at an applied
longitudinal field of 3.6 kOe for samples with (1) 1800-ppm Fe;
(2) 1500 ppm; (3) 1360 ppm; (4) 1160 ppm; (5) 1060 ppm; (6) 680
ppm.

lated from the Kohler plots and is, in general, negative.
If | Amz|> | Asal, then the resistivity anisotropy at zero
applied field A(H,=0) will be negative. For the
chromium-doped series, A(H,=0) was always negative,
as is seen in Fig. 9. For this series, we conclude that
A,q s very small and, considering the experimental error,
we are entitled to doubt whether any such anisotropy
exists.
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F1c. 6. Kohler plots of the transverse and longitudinal mag-
netoresistance of NViC. The bar represents the range of B/p, for
a single sample.
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F16. 7. Longitudinal Kohler plots of nickel with various scat-
tering centers. The bar denotes the range of B/py for a single
sample.

In contrast, the carbon-doped series showed a
definite increase in anisotropy. At high concentrations,
A(H,=0) is clearly positive (see Fig. 9) implying that
A,q is positive and of sufficient magnitude to outweigh
the negative Ayr. From the zero-flux resistivities ob-
tained from the Kohler plots, (Ass/po)~2% with
probable errors less than 0.5%. Neither of these two
series showed any field dependence in the scattering-
process resistivity in the form of deviations from
Kohler’s rule above H,=2.5 kOe.

T T T T T T T T T T T T
Lof - 2cr Fe
Re-reduced Longitudinal v
gl  Kohler Plot - Co Mn
Nickel Mn3 __¢
AL I 1 | ! 1 1 I I 1_
S o2 5022 5 32 5 p42

B7'B/p, kilogauss /ufk cm

Fic. 8. Longitudinal Kohler plots reduced as
(4p/po)—a*F (87'B/po)

using a, 8 values given in Table I. Symbols denote the extent of
the data for each series. Several plots are taken from Ref. 26, and
include (1) reduction series; (2) CN series; (3) recovery (dis-
location) series circles.
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TasLE I. Magnetic resistivity and magnetoresistivity parameters for scattering resulting from Cr, Mu, Fe, Co, and C impurities,
dislocations (L) and temperature-dependent effects (TD).

Cr Mn Fe Co TD 1 C
Bohr magneton change® du/dc —4.5 1.8 2.2 1.2 e
Moment at impurity siteb 0.6 24 2.8 1.8 0.6
Resistivity per defecte
uQcm
dp/dc 500 50 50 50 3504
atomic conc
Anisotropy A/pe% 0 +14 >0 +3.5 +3.3 +1.8
Magnetoresistivity parameters
a 0.6 10.2 10 10 1.27 0.76 0.68
B 0.885 0.290 0.272 0.272 0.410 0.310 0.835
Matthiessen’s rule parameters
ot/pi® 0.38 16 . 30 2.3
pt/pf 0.21 5.4 7.35 13.2 1

e Reference 9.
t Reference 10.

2 Reference 1. ¢ Reference 28.
b Reference 27. 4 Reference 31.

As mentioned above, the iron-doped series show three
distinct regions of behavior depending on solute con-
centration in terms of deviations from Kohler’s rule. As
shown in Fig. 10, this division is also reflected, more
markedly, in the anisotropy behavior. The zero applied-
field anisotropy changed sign on going from light to
heavy solute concentrations, confirming the positive
increase in the scattering process anisotropy Asqe. While
it is difficult to make very definitive statements about
this data, it is consistent with the following pattern.
The anisotropy per solute as determined from the reduc-
ing resistivities po was (Asq/pos)~ — 149, for concentra-
tions <600-ppm Fe and (Aq/poy)~—+149, for con-
centrations >2400 ppm (although for most of the
low-concentration samples the anisotropy was as close to
zero as the experimental error). Between these limits
shown in Fig. 10, the anisotropy demonstrated a smooth
change from one value to the other. A preliminary
temperature study of this effect was made by cooling the

sample to 1.7°K. This had the result of increasing the
anisotropy of a sample (1360 ppm) from —2.0 to 4+0.5
nQ cm and decreasing the deviation from the Kohler
plot at H,=2.4 kOe by about 109, From its effect on
the anisotropy, this temperature change is roughly
equivalent to an increase in concentration of 20 ppm.
Over the ranges examined, cobalt- and manganese-doped
samples behaved in the same fashion.

V. DISCUSSION

It is apparent that the work reported here lends
further support to the position that Kohler’s rule is valid
in nickel in the restricted form that the resistivity be
varied by altering only one kind of scattering center
(see also Schwerer and Silcox?3:26). Indeed, so valid does
the rule appear under this condition that it seems reason-
able that the relaxation time approximation may not be
necessary. The following argument suggests that this is,
indeed, the case.

Fic. 9. Typical longitudinal (open
circles, dashed lines) and transverse
magnetoresistance data illustrating nega-
tive zero-field anisotropy for NiCr and
positive anisotropy for N:iC at high
solute concentrations.
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The normal procedure (see Ziman?®) is to write down a
Boltzmann equation

0

afi ) e 98
—¢E-v =_fk\seatf.+“(v><B)'——’ (2)
ch ok

361(

where £, is the Fermi distribution function, gy is the
out-of-balance function generated by the electric (E) and
magnetic (B) fields, fi|sats is the effect of scattering
on the distribution function, v is the velocity of the
electrons at the Fermi surface, and ¢, ¢, and % have the
usual significance. We refer the interested reader to
Stinchcombe’s discussicn® of the regions of validity of
the Boltzmann equation. The equation is solved for
gx(E,B) which is inserted into the equation

J =€ ngkdk (3)

for the current. The term in the solution of g of interest
takes the form o (B)- E to yield Ohm’s law, i.e., after
inversion of the conductivity tensor, E;=p;;(B)J;.
Suppose we now consider a specimen s in which the
strength of the scattering has been increased by a
scalar \; independent of %, such as one might expect if
the number of scattering centers has been changed.
The Boltzmann equation for this specimen will be
identical to Eq. (2) except for A, which can be regarded
as multiplying the scattering term fi|sats Or, more
profitably, as resulting in reduced fields E/\;, B/\;. In
the latter case, we then know that gw=gx(E/\s,B/\s),
where gy is the same function as in the previous situation
and that, therefore, Ohm’s law takes the form F;/\,
=p;i(B/\s)J j. On comparing this with E;=p;;*(B)J;,
with p;;#(B) being the resistance of specimen s in a

36 J. M. Ziman, Electrons and Phonons (Oxford University Press,
Oxford, 1960), p. 491.

37 R. B. Stinchcombe, Proc. Phys. Soc. (London) A78, 275
(1961).

Conicentration ppm

magnetic field, we find p;;#(B)=N:p;;(B/\;) and a little
algebra produces Kohler’s rule.

Thus, the validity of Kohler’s rule does not depend on
making the relaxation time approximation. Indeed, a
derivative of Eq. (2) for collisions restricted to small
angles is the diffusion equation formulated by Pippard!®
which, in turn, is an appropriate form of the Fokker-
Planck equation.’® We, therefore, expect Kohler’s rule
to be valid in the sense used in this paper for the situa-
tion discussed by Pippard®!* and Klemens and
Jackson.?® The argument given above does depend on
being able to write down the Boltzmann equaticn. We
believe that even this may not be necessary, although we
have no rigorous proof of this. The argument is essen-
tially a dimensional one and begins by suggesting that
any model set up to describe this type of behavior will
result in a steady-state equation opposing the effect of
the Lorentz force in pulling the Fermi distribution out
of shape to the restoring effect produced by the effect
of scattering. If we alter the number of scattering
centers but keep the type the same, we may expect the
strength of the restoring force to be altered in an amount
proportionally dependent on the change in concentra-
tion of the center. Following the same argument as
above, we may then treat this as a reduced field situa-
tion where, by virtue of the Lorentz force form, both
the electric and magnetic fields are reduced by an
amount proportionally dependent on the change in
concentration as above. Finally, because we require an
Ohm’s law form, we find the same expression as before,
namely, Z.;/\;=p;;(B/\s)J; giving Kohler’s rule. Note
that the rule is valid in this form for any number of
carriers such as a two-band model, which could represent
neck and belly electrons® or spin-up and spin-down
electrons.*1

38 See, e.g., R. L. Liboff, Theory of Kinetic Equations (John Wiley
& Sons, Inc. New York, 1969), p. 252.
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It is perhaps worthwhile at this point to reiterate in
terms of this discussion what are felt to be the essential
conditions of validity for Kohler’s rule. First, the
resistivity must be altered by changing the number but
not the type of scattering center and this center must
be the dominant scattering mechanism. Also, the density
of scattering centers should be sufficiently dilute so
that no sensible interference can take place between
them and the Fermi surface properties should not be
significantly altered. Finally, as discussed in Ref. 39,
the effect of possible anomalous terms in the Hall
constant should be small. Under these circumstances,
studies of breakdowns in Kohler’s rule appear to be a
promising avenue for the study of scattering center
effects in transport properties (cf. the studies of break-
downs in Matthiessen’s rule!). It appears to be parti-
cularly useful in the situation in which it is necessary
to know that one particular scattering process is
dominant.

We turn now to considering the magnetoresistance
itself, where our experiments have demonstrated that
the nature of the scattering center clearly has a con-
trolling effect. The possibly fortuitous similarities in
shape discussed in Sec. IV B make it possible to make
quantitative comparisons between the longitudinal
magnetoresistance data. We have not been able to find
similar behavior for the transverse magnetoresistance
which, because of the existence of open orbits, does not
saturate. Nevertheless, the transverse data shows
similar differences according to the nature of the scat-
tering center. Table I points out the correlation between
the magnetoresistance parameter « and 8! and other
relevant numbers pertaining to the scattering centers,
i.e., the resistivity per defect, the total average magnetic
moment change for the appropriate alloy and the
moment localized at the impurity site as determined by
neutron scattering.

The most striking characteristic is the difference in
the saturation value of the longitudinal magnetore-
sistance « for the local moment group (Fe, Co, Mn) and
the remainder. Thus, there is a factor of roughly 20
between « for the local-moment group and the nickel-
chromium alloy. Clearly, characteristics of the Fermi
surface have to enter into any quantitative discussion of
these data, but a relevant quick comparison might be
made with copper alloys. The Fermi-surface scheme for
nickel proposed by Hodges, Ehrenreich, and Lang?*
involves two spin bands for the s electrons with the

# J. M. Luttinger [Phys. Rev. 112, 789 (1958)] predicts two
terms in the anomalous Hall coefficient for a ferromagnetic
material which are linearly proportional to, and independent of
o, respectively. The linear term will not give rise to deviations
from Kohler’s rule but a contribution will come from the term
independent of oo. These deviations become increasingly important
at large values of B/po. Using experimental values for the anoma-
lous Hall coefficients reported by Van Elst (Ref. 35) the deviation
at our high-field values of B/po=10* kG/u cm would be of
order 0.5%, and undetectable.

4 1.. Hodges, H. Ehrenreich, and N. D. Lang, Phys. Rev. 152,
505 (1966).
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electrons split approximately equally between the bands.
For the majority spins, the Fermi surface is similar to
that of the noble metals, i.e., it has necks across the
(111) Brillouin-zone boundaries, whereas the minority
spin surface is like a distorted free-electron sphere.
Since a free-electron sphere introduces little magnetore-
sistance, it appears reasonable to make the comparison
with copper because of the similarity with the majority
spin surface. The published data for copper# suggest
values of a=~0.5-1.5 which are comparable to the values
of a found in nickel for chromium and carbon impurities
and the dislocation and thermal scattering. These
saturation values correspond to variations in mean free
path of approximately 1.5-5 and are, therefore, con-
sistent with the direct measurements of Deaton and
Gavenda® and the inferred values of Dugdale and
Bazinski! in copper. The very strong magnetoresistance
exhibited by the local moment group of impurities in
nickel appears most unusual. If interpreted as simple
relaxation time anisotropies, these values correspond
to variations in mean free path of order 30. We will
explore the ramification of this a little further.

The discussions of longitudinal magnetoresistance by
Pippard®®* and Klemens and Jackson'® point out the
possibility of extreme magnetoresistance variations for
the combination of a multiply connected Fermi surface
and a scattering process dominated by small-angle
scattering. An attempt® to observe such small-angle
scattering effects by a study of phonon scattering in
copper was apparently frustrated by impurity effects.
Nevertheless, this mechanism is apparently the only
one predicting increases in the magnetoresistance of the
size observed (i.e., a~10). With this basis, consideration
of the scattering centers studied in the present paper
leads to the following contradiction. Small-angle
scattering is to be expected from long-range potentials,
e.g., in the scattering from dislocations and according
to the Friedel*®® model (see also Hayakawa®),
chromium, and other impurities with nonlocalized
moments. We may also expect small-angle scattering
from phonon scattering at low temperatures. On the
other hand, isotropic scattering is anticipated from those
impurities where the potential is very strongly localized,
such as the local moment group. Similarly, any spin-
dependent scattering is usually considered to be
associated with very localized potential. Hence, we
would anticipate weak magnetoresistance from the
local moment group and striking magnetoresistance
from the remainder in contradiction to observation.
Our observations, therefore, suggest that if the scat-
tering potential is, indeed, the source of these
phenomena, then the potential associated with the
local moment group is likely to have some unusual
features.

41 7. 0. Strom-Olsen, Proc. Roy. Soc. (London) A302, 83 (1957).

42 A). L. Clark and R. L. Powell, Phys. Rev. Letters 21, 802
(1968).

4 H, Hayakawa, Progr. Theoret. Phys. (Kyoto) 37, 213 (1967).
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We note next that these observations parallel the
unusually large deviations from Matthiessen’s rule
discovered recently in iron!! and nickel alloys.%1? Since
in both the present paper and in work on Matthiessen’s
rule a prime consideration is the anisotropy of the
scattering process, it will be appropriate to discuss the
spin-mixing model'®!! proposed to account for the
Matthiessen’s rule breakdown in nickel. Briefly, each
spin band is considered to conduct independently at low
temperatures and two relaxation times, one for each
band, are postulated. As the temperature is raised, a
nonresistive spin-flip mechanism is postulated as be-
coming important and eventually dominating the
scattering process at high temperatures, so that between
collisions contributing to resistance, electrons scatter
from one spin band to the other many times. An
essential feature of the model is that, at low tempera-
tures, the bands conduct in parallel so that that re-
sistivity is dominated by the longest relaxation time. At
high temperatures, the bands are mixed and the relaxa-
tion times are averaged, resulting naturally in a
resistivity increase. The large values of the deviations
are accounted for by considerable differences between
the resistivities due to each band which are, in turn,
related to the Friedel*® models for the impurity electronic
structure. Finally, since the nonresistive spin-flip
scattering is proportional to the square of the tempera-
ture, the process is tentatively identified as that of
electron-electron scattering which results in a spin flip
but conserves the total electron momentum.

We note a rough similarity between this type of model
and the model of magnetoresistance in the relaxation
time approximation. Thus, in zero-magnetic field,
electrons at each point on the Fermi surface contribute
independently and in parallel to the current. Corre-
spondingly, the resistivity is dominated by those current
carriers with the lowest resistance, i.e., the longest
relaxation time (taking into account projection factors,
etc.). As the field is increased, the current carriers sample
larger and larger sections of orbits on the Fermi surface
averaging out the relaxation times and, thus, giving
more weight than previously to the shorter relaxation
times. Naturally, the resistance increases. In this case,
the role of the magnetic field is to average the relaxation
time and, therefore, the resistance over sections of the
orbit, while in the spin-mixing case, the averaging is
over bands and is carried out by thermal effects.

Bearing in mind the possibility that spin-mixing
effects may enter into the magnetoresistance, then, in
general, we are concerned with both spin and mo-
mentum characteristics and we need to discuss both.
In the present case, the experiments suggest that spin
mixing is not the relevant process according to the
following argument. Successful Kohler plots have been
obtained for these alloys, implying that the scattering
is independent of B and that the primary role of the
magnetic field is to make the carriers describe appropri-
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ate orbits on the Fermi surface. Thus, either each band
has the same magnetoresistance—in which case the spin
mixing, however strong, is irrelevant—or alternatively,
spin mixing is introduced by the magnetic field in a
rather special way to preserve the form of Kohler’s rule.
The latter appears unlikely. Hence, if spin mixing is the
relevant process for the breakdowns in the Matthiessen’s
rule, our preference is to seek the origin of the mag-

‘netoresistance in other processes. Note, however that

a two-band model is not inconsistent with Kohler’s rule,
provided each band separately obeys Kohler’s rule and
provided the resistivity in each band arises from the
same scattering center as in our earlier discussion. Thus,
in the range of temperatures with which we are con-
cerned, each spin band can conduct separately in accord
with the spin-mixing model.

It may indeed be possible to deduce parameters
associated with the spin-mixing model from the
magnetoresistance. A tempting first approximation is
to assume that all the magnetoresistance is associated
with the copperlike majority spin surface and that the
nearly spherical minority spin surface contributes no
magnetoresistance at all. In these circumstances it is
possible that in zero field almost all the current is
carried by one band and at the highest fields the current
is carried by the other band. The saturation longitudinal
magnetoresistance ratio « is then a direct measure of the
ratio of the resistivities associated with each band. The
conditions under which this will obtain include very
strong magnetoresistance for the one band and a marked
difference between the resistivities of the two bands
(as obtained in the spin-mixing model). The values
obtained in this work and those obtained by Fert and
Campbell® and Farrell and Greig!® lead to qualitative
agreement but with considerable scatter (see Table I).
More detailed discussion of these numbers and the
appropriate method of analyzing both types of data is
left for future consideration.

We remark now that the other magnetoresistance
parameters, i.e., 8 and Ay, also show systematic varia-
tions with scattering center. As noted above, a naive
connection between B8 and the reciprocal of the Hall
constant can be made through the tube-integral formula.
This point needs to be explored further both experi-
mentally and theoretically. Two remarks can be made
concerning the zero-field anisotropy A,qs. First, Ay is
proportional to py, i.e., the anisotropy depends on the
number of scattering centers present. Second, A;q seems
to be associated with the local moment characteristic
of the scattering center. Thus, the only center for which
Ayq is zero, i.e., the chromium impurity, is also the only
center for which the local moment is known? to be
zero. Dislocations have an associated local moment
distributed over a relatively large volume as a result of
the magnetoelastic coupling between the strain field and
the spin distribution.** We almost certainly should

4 . Vicena, Czech. J. Phys. 5, 480 (1954).
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expect a considerable contribution from the dislocation"Fconcentration, the coupling is sufficiently weak that the

core. It seems reasonable to expect a similar coupling
with the weaker strain field associated with an intersti-
tial impurity such as carbon. The observations are in
line with these speculations. Similarly, the largest zero-
field anisotropy (with due reservations concerning the
concentration dependence) is observed in those samples
with the iron group of impurities, i.e., those scattering
centers which undoubtedly have the largest local
moment. This discussion would suggest that the ob-
servations on the temperature-dependent scattering
indicate that a magnetic disturbance of this nature is
associated with the thermal excitations responsible
for scattering in that case. Indeed, the parallel between
scattering by a static strain field (i.e., dislocations) and
by a dynamic strain field (i.e., phonons) has been drawn
elsewhere?s and we comment that our observations are
consistent with a parallel of this nature.

The concentration dependence of A,; for iron-group
solutes is an oddity with the following characteristic
features. At the highest and lowest concentrations, the
data for fields #>2.5 kOe follow the same Kohler plot
but the value of As4/po differs in sign in the two regions.
For intermediate concentrations the data did fit the
Kohler plot at high fields (H# > 10 kOe) but did not do so
in the intermediate field region (2.5 kOe<H <10 kOe).
These observations suggest a two-state ordering process
in which one state of order exists at the lowest con-
centration and the second state exists at the high-
concentration end. Since the same Kohler plot applies
in each case (although A, changes sign), a plausible
possibility is that the impurities may be antiferro-
magnetically aligned with the matrix magnetization at
low concentrations and become ferromagnetically
aligned at high concentrations. At the intermediate

4 Z. S. Basinski, J. S. Dugdale, and A. Howie, Phil. Mag. 8, 199
(1963).

magnetic field can align the initially random local
moments (thus, explaining the breakdown of Kohler’s
rule in intermediate concentration samples in inter-
mediate fields). Obviously, such an occurrence implies
a relatively long-range impurity-impurity interaction,
since this occurs at somewhat low concentrations, i.e.,
at an impurity-impurity spacing of about 10 atomic
spacings. Nevertheless, it is difficult to conceive of a
preferable explanation of the experimental results.

In conclusion, these experiments have underlined the
role played by the nature of the scattering center in this
transport process. In particular, the extremely high
magnetoresistance shown by impurities of the iron
group in nickel has been demonstrated. Finally, break-
downs in Kohler’s rule appear to be useful in studies of
scattering center effects, just as are breakdowns in
Matthiessen’s rule.
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